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Chapter 1

Introduction

Turbulent flow is an integral part of the world around us. One can easily observe its
effects, from irregular motions arising in fast flowing streams to unexpected gusts of
wind inverting poorly made umbrellas. When trying to understand the behaviour of air,
whether that be in predicting the weather or in applications of aeronautical engineering,
modelling turbulence is particularly important. Despite this, turbulent flow is one of the
most poorly understood topics in mathematical physics, and this makes simulating it
very difficult.

The difficulties inherent in understanding turbulent flow stem from the equations used
to study the motion of fluids. In this dissertation, we will consider an incompressible vis-
cous fluid with unit density and use the Navier–Stokes equations (NSEs) in the following
conservation form:

∇ · u = 0, (1.1)

∂u

∂t
+∇ · (uu) = −∇p+ ν∇2u + F. (1.2)

As usual, u = (u1, u2, u3)T is the flow velocity, p is the pressure, ν is the kinematic
viscosity of the fluid, and F is any body force acting on the fluid. The second term of the
momentum equation (1.2) is the divergence of the second-rank tensor uiuj. Due to the
nonlinearity introduced by this term, finding even slightly general solutions to the NSEs
is incredibly difficult. Knowledge of qualitative properties of solutions to the full Navier–
Stokes equations in 3-D is also extremely limited. Proving “Existence and Smoothness
of the Navier–Stokes Equation” is one of the six unsolved ‘Millenium Prize Problems’
established by the Clay Mathematics Institute (Fefferman, 2000; Ladyzhenskaya, 2003).
Progress in this area has mostly been limited to work on related systems with better
regularity, an idea pioneered by Leray (1934).

In high Reynolds number flows, turbulence often arises. Although there is no standard
definition of turbulence, it is often defined by its flow properties. For example, Sagaut
et al. (2013) list the most widely agreed of these features as:

• Unpredictability: due to the irregular nature of the solution for a turbulent flow,
which exhibits strong dependence on initial and boundary conditions, obtaining a
deterministic description of the motion of a turbulent flow is almost impossible;

• Three-dimensionality of the vorticity fluctuations;

• Enhanced mixing: turbulence causes far more rapid mixing than that caused by
molecular diffusion, leading to faster mass, momentum and energy transfer;
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• Turbulent eddies (or fluctuations) occur over a wide range of scales in both time
and space.

Given the analytical intractability of the Navier–Stokes equations outside very special
cases, Computational Fluid Dynamics (CFD) has become an increasingly important tool
for predicting flows in both scientific and engineering applications. Because of the un-
predictable nature of turbulent flow, performing a numerical simulation seems to be the
only approach for investigating high Reynolds number flows which may exhibit turbu-
lence. However, the final property mentioned above means that modelling turbulent flow
is a multiscale problem with a large separation between the smallest and largest scales of
flow features. To reliably perform a Direct Numerical Simulation (DNS) of the NSEs we
would need our mesh spacing to be at least as small as the minimum scale at which we
expect to observe turbulent eddies.

To investigate how small this minimum scale must be, we introduce the idea of an
energy cascade, which was first proposed by Richardson (1922). Let EK be the kinetic
energy of the system, as averaged over a statistically steady state so we have no time
dependence. Plancherel’s identity tells us that

EK ≡
1

2

∫
R3

|u(x)|2 dx =
1

2(2π)3

∫
R3

|û(k)|2 dk, (1.3)

where û is the Fourier transform of the flow velocity u, as defined in (2.11) below. We
can rewrite this last expression as an integral over the scalar wavenumbers k = |k|:

EK =
1

(2π)3

∫ ∞
0

E(k) dk, where E(k) =
1

2

∫
|k|=k
|û(k)|2 dSk, (1.4)

and the second integral is over the spherical surface |k| = k. This defines the energy
spectrum E(k), which represents the kinetic energy contained in the eddies whose size
corresponds to the wavenumber k in spectral space. A typical log-log plot of E(k) against
k obtained from experimental results is shown Figure 1.1.

Three distinct regions are visible on this graph, as in Sagaut et al. (2013):

• The large scale region (i.e. small k) where the gradient is positive. Here turbulent
energy is supplied by large-scale forcing to maintain the statistically steady state.

• The central region where energy is transferred, on average, from larger scales to
smaller scales by nonlinear interactions.

• The small scale region where the effective Reynolds number is now small, so viscous
effects dissipate the kinetic energy.

The development of a mathematical theory to try to explain turbulence stems mainly
from early work on the subject by Kolmogorov (1941). Although progress has been made
using this work as inspiration, it is mostly based on experimental evidence such as the
energy cascade. Berselli et al. (2006) even refer to Kolmogorov’s theory as combining
“audacious physical guesswork and dimensional analysis.” Kolmogorov (1962) later re-
fined his theory by introducing the idea of “intermittent” turbulence, but that is outside
the scope of this dissertation. Nonetheless, the phenomena which Kolmogorov (1941)
tried to explain are of great significance to the understanding of turbulent flows.
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Figure 1.1: Typical log-log plot of the energy spectrum showing the three distinct regions
as different colours. The inertial range is displayed in blue, while the large and small
scale regions are coloured green and red respectively.

The central region in Figure 1.1, often referred to as the inertial range, is of the most
interest. The width of this inertial range increases with Re = LU/ν, the macroscopic
Reynolds number of the flow where L and U are appropriate length and velocity scales.
Kolmogorov (1941) used dimensional analysis to show that the smallest length scale at
which turbulent eddies persist, i.e. where viscous dissipation first becomes important, is
LK ≈ Re−3/4L. This corresponds to where the small scale region in red appears on the
above plot. This is an important result since it tells us the size of the mesh required
to accurately simulate the full motions of the flow. For a 3-D DNS, the number of grid
points must therefore be O(Re9/4). For many applications this makes performing a DNS
infeasible. Using typical values of Re for air flow around a car means ∼ 1013 mesh points
are required, and this figure rises to ∼ 1045 for atmospheric flows (Berselli et al., 2006).

The plot in Figure 1.1 shows a universal relation E(k) ∝ k−5/3 in the inertial range.
Since this relation is observed in most examples of turbulent flow, any model we use to
simulate turbulence will want to exhibit this behaviour. Let us define the average kinetic
energy flux to smaller scales as

ε = 2ζk2E(k), (1.5)

where ζ is the ‘eddy turn-over frequency’ at wavenumber k, which only depends on k and
U by the dimensional relation

ζ ∼ kU. (1.6)
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Manipulating the Fourier transform of the NSEs produces an equation for the energy
spectrum of the form

∂E(k)

∂t
= P (k)− ∂ε

∂k
+D(k), (1.7)

where P (k) accounts for the large scale energy supply, and D(k) = −2νk2E(k) accounts
for viscous dissipation at small scales. Kolmogorov (1941) hypothesised that in isotropic
turbulence (turbulence that looks the same under spatial translations and rotations),
both of these terms are negligible in the inertial range, so averaging over statistically
steady states tells us that

∂ε

∂k
= 0. (1.8)

Thus, if we assume E(k) only depends on k and U , then definitions (1.4) and (1.5) give
the dimensional results E(k) ∼ kU2 and ε ∼ ζk2E(k), although ε is in fact independent
of k. Together with the relation (1.6), these imply

E(k) = K0ε
2/3k−5/3, (1.9)

where K0 is a dimensionless constant which has been found to take a value of approxi-
mately 1.5 (Sagaut, 2006).

Most applications of CFD are interested in macroscopic quantities, such as the total
drag exerted by the flow on an object. It would thus make sense to calculate average
flow quantities on a coarser grid to reduce computational cost while hoping to retain the
accuracy of the simulation. Reynolds (1895) introduced the concept of evaluating average
flow quantities directly over a century ago, and much progress has been made since. This
dissertation will focus on Large Eddy Simulation (LES), which involves taking spatial
averages of the flow quantities to simulate the large scale motion of the flow. LES has been
used since the 1960s, with Smagorinsky (1963) being one of its first uses. However, since
LES research has mainly been focused on applications, advances have often been made
before the underlying mathematics has been fully understood, particularly regarding the
properties of averages.

This dissertation will develop the ideas of filtering and subgrid-scale modelling used
in the LES approach. I will describe the conditions that a plausible subgrid model
should satisfy, including Galilean invariance and the realizability of the subgrid-scale
stress tensor. I will also investigate the possible application of material frame-indifference
to LES models. Making assumptions based on these conditions, I will derive the simple
Smagorinsky eddy viscosity model, which aims to replicate the effect of the energy flux
ε at the grid scale using a diffusive term. I will also derive newer dynamic models based
on the Germano identity, which motivates the introduction of a further ‘test filter’ to
determine the eddy viscosity during the simulation. Finally, I will describe the relation
between the LES approach and the regularization procedure of Leray (1934) for proving
the existence of weak solutions of the Navier–Stokes equations.
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Chapter 2

Scale Separation and Filtering

2.1 Scale Separation

To model the large-scale motion of a turbulent flow without computing the small-scale
motion directly, we need to separate each of the flow quantities u and p into a large-scale
part and a small-scale fluctuation. This is achieved by taking averages, denoted by 〈 · 〉,
of the quantities and defining the fluctuations as the differences from these averages:

u = 〈u〉+ u′, p = 〈p〉+ p′. (2.1)

Conventional turbulence models, which use the Reynolds Averaged Navier–Stokes
(RANS) approach, use the long-time average introduced by Reynolds (1895)

〈u〉 = lim
T→∞

1

T

∫ T

0

u dt, 〈p〉 = lim
T→∞

1

T

∫ T

0

p dt, (2.2)

to separate out the large scales. However, as Berselli et al. (2006) point out, this average
erases all time dependence, so dynamic features of the flow outside statistical steady
states cannot be captured.

To combat this problem, LES uses a local spatial average, which preserves these
dynamic features, but still acts as a filter to isolate the large scales. According to Sagaut
(2006), the averaging operator 〈 · 〉 must satisfy the following properties so that we can
manipulate the Navier–Stokes equations after applying the filter:

1. Preservation of constants

〈a〉 = a, for a = constant. (2.3)

2. Linearity
〈aφ+ bψ〉 = a〈φ〉+ b〈ψ〉, for a, b constant. (2.4)

3. Commutation with differentiation〈
∂φ

∂s

〉
=
∂〈φ〉
∂s

, for s ∈ {x1, x2, x3, t}. (2.5)
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Applying a filter to the NSEs, and using these three properties leads to the Space
Filtered Navier–Stokes Equations:

∂〈u〉
∂t

+∇ · 〈uu〉 = −∇〈p〉+ ν∇2〈u〉+ 〈F〉, (2.6)

∇ · 〈u〉 = 0. (2.7)

The closure problem for LES arises from the nonlinear term in the filtered momentum
equation (2.6), since 〈uu〉 6= 〈u〉〈u〉. This is the same issue that needs to be overcome
when modelling multiphase flow, where averages are taken over the different phases within
a control volume. We will return to this problem after introducing some concrete filters.

2.2 Example Filters

A good way to ensure the commutation with spatial differentiation property (2.5) holds
is to represent the filter mathematically by a convolution with a filter kernel G:

〈u〉(x, t) = (G ∗ u) (x, t) =

∫
R3

G(x− ξ)u(ξ, t) dξ. (2.8)

Since linearity is a fundamental property of the convolution, this definition ensures lin-
earity of the filter independently of the choice of G. To satisfy the constant preservation
property (2.3), we must also have ∫

R3

G(ξ) dξ = 1. (2.9)

0
-0.5

1

0.5

2

G
b
(x
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Figure 2.1: Two-dimensional representation of the box kernel with ∆ = 0.5.

7



There are three filters in particular which are most commonly used in Large Eddy
Simulation. In the following definitions, ∆ is the cutoff length scale, which is used as the
mesh spacing in a numerical simulation. Features of the flow smaller than this length scale
will be neglected by the filter, so these must be modelled by extra terms (see section 2.3).
The definitions given in this section are 3-D generalisations of the 1-D filter definitions
used by Sagaut (2006).

The first of the filters is the ‘box filter’, which is a simple implementation of the idea
of a local, spatial average. Its kernel is

Gb(x) =

{
1

∆3 if |xi| ≤ ∆
2

for all i ∈ {1, 2, 3},
0 otherwise,

(2.10)

as shown in Figure 2.1.
Another is the ‘spectral cutoff filter’, which is a direct implementation of the idea of

filtering out small spatial scales. If we define the Fourier transform F̂ of a function F as

F̂ (k, t) =

∫
R3

F (x, t)e−ik·x dx, (2.11)

a standard convolution result tells us that

〈̂φ〉 = Ĝφ̂. (2.12)

We can think of the values of φ̂ at small wavenumbers k = |k| as the contribution of φ
at large scales and vice versa. Therefore, it makes sense to first define the spectral cutoff
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x

3
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y

0
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1 -1

Figure 2.2: Two-dimensional representation of the spectral cutoff kernel with ∆ = 0.5.
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filter in terms of the Fourier transform of its kernel:

Ĝc(k) =

{
1 if |ki| ≤ kc for all i ∈ {1, 2, 3},
0 otherwise,

(2.13)

where kc = π/∆. By inverting the transform, we obtain the spectral cutoff filter kernel
in physical space, as shown in Figure 2.2:

Gc(x) =
sin(πx1

∆
) sin(πx2

∆
) sin(πx3

∆
)

π3x1x2x3

. (2.14)

The third commonly used filter takes a similar form under a Fourier transform as it
does in physical space. Thus, it is a good example of both a local spatial average and a
large-scale filter. This filter has a Gaussian as its kernel, as shown in Figure 2.3:

Gg(x) =
(γ
π

)3/2 1

∆3
exp

(
−γ |x|

2

∆2

)
, (2.15)

where the parameter γ sets the width of the Gaussian relative to the cutoff scale ∆. In
LES, γ is usually set to be 6 (Berselli et al., 2006).

The Gaussian and the spectral cutoff filter kernel are both non-local in physical space.
However, the fast decay away from x = 0 in both Gg and Gc suggest that this will not
cause issues in simulations except near boundaries. We also note that the spectral cutoff
filter kernel is negative in half the domain, which will have certain implications later in
section 3.3.
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Figure 2.3: Two-dimensional representation of the Gaussian kernel with ∆ = 0.5.
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2.2.1 Differential Filters

In some cases, the filter kernel used in LES can usefully be thought of as a Green’s
function for a linear differential operator. Germano (1986) first proposed using this type
of filter, which allows the original variables to be written in terms of the filtered variables
as

φ = L(〈φ〉), (2.16)

where L is a differential operator which has the filter kernel G as its Green’s function.
Following Sagaut (2006), we can Taylor expand

φ = 〈φ〉+ αi
∂〈φ〉
∂xi

+ αij
∂2〈φ〉
∂xi∂xj

+ ... (2.17)

where αi, αij, etc. are scaling parameters. In (2.17), and throughout this dissertation, we
make use of Einstein’s summation convention unless explicitly stated otherwise. We will
use α to denote our cutoff length scale in this subsection (rather than ∆) to avoid con-
fusion with differential operators. Differential filters are classified by their corresponding
inverse operator, i.e. an elliptic filter uses the Green’s function for an elliptic operator.

Berselli et al. (2006) suggested that differential filters are a more natural fit for
bounded domains than the original convolution definition of a filter. Since almost all
practical applications of turbulence modelling involve boundaries, differential filters may
well become more widely used in future developments of LES.

The most commonly used differential filter is based on the modified Helmholtz oper-
ator, L = I − α2∇2, so we can define the filter implicitly by

φ = L(〈φ〉) = 〈φ〉 − α2∇2〈φ〉. (2.18)

Inverting this operator using its free-space Green’s function defines a convolution filter:

〈φ〉 =
1

4πα2

∫
R3

φ(ξ, t)

|x− ξ|
exp

(
−|x− ξ|

α

)
dξ, (2.19)

but (2.18) can also be used in domains with boundaries, for which the equivalent con-
volution filter (2.19) would use the Green’s function for such domains. Equation (2.18)
differs from the regular Helmholtz operator [L = I +α2∇2] to ensure the normalizability
property, otherwise the exponent in the convolution expression would be positive. Also,
the Fourier transform of (2.18) is given by

φ̂ = (1 + α2k2)〈φ̂〉, (2.20)

with a positive definite prefactor, so the operator is always invertible. Again, this does
not hold for the regular Helmholtz operator.
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2.3 Space Filtered Navier–Stokes Equations

As mentioned before, the nonlinear term 〈uu〉 gives us a closure problem for the filtered
equations. To gain insight into what a good closure model would involve, we will now
explore how to decompose the nonlinear term. Using the relation for u from (2.1),

〈uu〉 = 〈(〈u〉+ u′)(〈u〉+ u′)〉, (2.21)

which, using the linearity property of filtering, leads to

〈uu〉 = 〈〈u〉〈u〉〉+ 〈u′〈u〉〉+ 〈〈u〉u′〉+ 〈u′u′〉. (2.22)

We can now rewrite (2.6) as

∂〈u〉
∂t

+∇ · 〈〈u〉〈u〉〉 = −∇〈p〉+ ν∇2〈u〉+ 〈F〉 − ∇ ·T, (2.23)

where the tensor T consists of the last three terms of (2.22). These terms can also
be expressed as a sum of two tensors: the cross-stress tensor C, which represents the
interaction of the small scale motion with the larger scales, and the Reynolds stress
tensor R, which accounts for the interactions between subgrid scales (Sagaut, 2006).
Their components are given by

Cij = 〈u′i〈uj〉〉+ 〈〈ui〉u′j〉, (2.24)

Rij = 〈u′iu′j〉. (2.25)

2.3.1 Key Differences Between LES and RANS

An averaging operator is called a Reynolds operator if, in addition to the properties
already listed in section 2.1, it also satisfies

〈〈φ〉ψ〉 = 〈φ〉〈ψ〉 for all φ, ψ. (2.26)

Using linearity and preservation of constants, this also implies

〈〈φ〉〉 = 〈φ〉 for all φ. (2.27)

This second property is clearly not satisfied by a general convolution filter.
However, for the long-time average (2.2) used in RANS, the time dependence of the

flow quantities is removed by applying the average once. Property (2.26) is then satisfied,
so the long-time average is a Reynolds operator:

〈〈φ〉ψ〉 = lim
T→∞

1

T

∫ T

0

〈φ〉(x)ψ(x, t) dt, (2.28a)

= 〈φ〉 lim
T→∞

1

T

∫ T

0

ψ dt = 〈φ〉〈ψ〉. (2.28b)

In particular, a Reynolds operator produces the following results for terms in the averaged
NSEs:

〈〈u〉〈u〉〉 = 〈u〉〈〈u〉〉 ⇒ 〈〈u〉〈u〉〉 = 〈u〉〈u〉, (2.29a)

〈u′〉 = 〈u− 〈u〉〉 = 〈u〉 − 〈〈u〉〉 ⇒ 〈u′〉 = 0, (2.29b)

C = 〈u′〈u〉〉+ 〈〈u〉u′〉 = 〈u′〉〈u〉+ 〈u〉〈u′〉 ⇒ C = 0. (2.29c)
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Applying these to momentum equation (2.23), we obtain the Reynolds Averaged Navier–
Stokes momentum equation:

∇ · (〈u〉〈u〉) = −∇〈p〉+ ν∇2〈u〉+ 〈F〉 − ∇ ·R. (2.30)

Here, the only term not expressed in terms of the filtered variables is the Reynolds stress
R = 〈u′u′〉, so this is the only term requiring a closure model. Helpfully, it is obvious
from the definition that R is a symmetric tensor, and it can also be shown that the
Reynolds stress is positive semidefinite (see section 3.3).

Since the convolution filters used in LES are not Reynolds operators, none of the
above results apply directly to the spatially-averaged equations. Analogies between LES
and RANS can only be reliably drawn if certain restrictions are imposed on the extra
terms that arise in the spatially-averaged equations. The implications of some of these
restrictions will be explored in Chapter 3.

2.3.2 Leonard Decomposition

For a filter that is not a Reynolds operator, evaluating the∇·〈〈u〉〈u〉〉 term in the momen-
tum equation (2.23) requires a second application of the filter. Leonard (1974) therefore
proposed a further decomposition of the nonlinear term, introducing the subgrid-scale
stress tensor as

τij = 〈uiuj〉 − 〈ui〉〈uj〉 = Lij + Cij +Rij, (2.31)

where the Leonard stress tensor is

Lij = 〈〈ui〉〈uj〉〉 − 〈ui〉〈uj〉. (2.32)

The momentum equation (2.6) now becomes

∂〈u〉
∂t

+∇ · (〈u〉〈u〉) = −∇〈p〉+ ν∇2〈u〉+ 〈F〉 − ∇ · τ . (2.33)

We must now find an appropriate closure model for τ in terms of the filtered variables,
so that the above differential equation, and the filtered mass conservation equation (2.7),
can be discretized and solved numerically.

12



Chapter 3

Physical Constraints for
Subgrid-Scale Models

Analysis of the Navier–Stokes equations shows that they satisfy various properties cor-
responding to physical laws and symmetries. In this chapter, we will describe a number
of these properties, and analyse the filtered NSEs to derive a number of constraints on
the turbulence model. These constraints ensure that the model remains consistent with
underlying qualitative properties of the fluid flow.

3.1 Galilean Invariance

The Navier–Stokes equations are known to be invariant under the Galilean group of
transformations, which is generated by ‘Galilean boosts’

x∗ = x + Vt+ b, t∗ = t, (3.1)

as well as constant rotations
x∗ = Ax, t∗ = t, (3.2)

and time translations
x∗ = x, t∗ = t+ s. (3.3)

Here, V and b are constant vectors, A ∈ O(3) is a constant 3× 3 orthogonal matrix, and
s is a constant scalar.

We now want to show that the filtered NSEs are also Galilean invariant. Following
the approach of Speziale (1985a), it is only necessary to show that the filtered part of a
Galilean invariant function is also Galilean invariant. Starting with the Galilean boosts
from (3.1), let φ be such a function, with its transformation φ∗ defined by

φ∗(x∗, t∗) = φ(x, t). (3.4)

We then consider the Galilean transformation of the filtered part of φ, as given by

〈φ〉∗(x∗, t∗) =

∫
D

G(x∗ − ξ∗)φ∗(ξ∗, t∗) dξ∗, (3.5)

where G is a normalised filter function as in Chapter 2. The change of variables (3.1)
implies

x∗ − ξ∗ = x + Vt+ b− (ξ + Vt+ b) = x− ξ, (3.6)
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and

dξ∗ =

∣∣∣∣∂ξ∗i∂ξj

∣∣∣∣ dξ, (3.7)

where |∂ξ∗i /∂ξj| is the Jacobian of the transformation (3.1). This determinant is equal to
1 for all transformations in the Galilean group, so substituting (3.4), (3.6) and (3.7) into
(3.5) gives the desired result

〈φ〉∗(x∗, t∗) =

∫
D

G(x− ξ)φ(ξ, t) dξ ≡ 〈φ〉(x, t). (3.8)

Since time translations (3.3) produce no change of spatial variable, the above proof
becomes trivial, as (3.6) and (3.7) are satisfied automatically. However, in the case of the
constant rotation (3.2), relation (3.6) is not satisfied. Therefore, the above result only
holds if the filter function G satisfies

G(Ax) = G(x) for all A ∈ O(3), i.e. G(x) = G̃(|x|). (3.9)

for some function G̃. Hence, we should impose that the filter function is spherically
symmetric,1 in which case the filtered equations are Galilean invariant.

We must note, however, that differentiating the transformation (3.1) gives

u∗ =
Dx∗

Dt∗
=

D

Dt
(x + Vt+ b) = u + V. (3.10)

Although this shows that u is not strictly invariant under the transformation, it is con-
sistent with the notion of Galilean invariance (or covariance) in particle mechanics. Fol-
lowing the above proof with u replacing φ, we obtain the result

〈u〉∗ = 〈u〉+ V, (3.11)

which combined with (3.10) also tells us that the fluctuation u′ = u− 〈u〉 satisfies

u′∗ = u′, 〈u′∗〉 = 〈u′〉. (3.12)

We can directly apply these results to the definition of τ (see (2.31) in the previous
chapter) to investigate how it transforms under a Galilean boost:

τ ∗ = 〈u∗u∗〉 − 〈u∗〉〈u∗〉, (3.13a)

= 〈(u + V)(u + V)〉 − 〈u + V〉〈u + V〉, (3.13b)

= 〈uu〉 − 〈u〉〈u〉. (3.13c)

This shows that τ is invariant under Galilean boosts, so a physically reasonable closure
model should exhibit this property.

Many subgrid models make use of the Leonard (1974) decomposition of the subgrid-
scale stress tensor, which we introduced in section 2.3.2:

τij = Lij + Cij +Rij, (3.14a)

Lij = 〈〈ui〉〈uj〉〉 − 〈ui〉〈uj〉, (3.14b)

Cij = 〈〈ui〉u′j〉+ 〈u′i〈uj〉〉, (3.14c)

Rij = 〈u′iu′j〉. (3.14d)

1Ghosal (1999) notes that this is not always necessary in practical implementations, since on a coarse
grid there will be a large number of eddies at a smaller scale than ∆. This will cause the filtered variables
to be almost independent of the shape of the filter, in the same way that the specific heat of an object
does not depend on the shape of the object if its dimensions are much larger than the molecular scale.
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Since Lij can be calculated directly, the problem can be reduced to finding a closure
model for Cij and Rij. However, Speziale (1985a) noted that, although τij is invariant
under the transformation (3.1), its constituent parts transform as

L∗ij = Lij − Vi〈u′j〉 − Vj〈u′i〉, (3.15a)

C∗ij = Cij + Vi〈u′j〉+ Vj〈u′i〉, (3.15b)

R∗ij = Rij, (3.15c)

as found by applying (3.10) to (3.12) to the definitions of these tensors. This shows that
Rij and the sum Lij + Cij are Galilean invariant, but the individual tensors Lij and Cij
are not. In models that calculate Lij explicitly, the modelled cross-stresses Cij must have
a Galilean dependence as above.

If we take the filter to be spherically symmetric, as suggested by our earlier result,
then taking the same approach as before but with constant rotations (3.2) gives

u∗ = Au, 〈u〉∗ = A〈u〉, u′
∗

= Au′. (3.16)

Inserting these expressions into τ gives

τ ∗ij = AikAjlτkl, i.e. τ ∗ = AτAT . (3.17)

Analogous results can be found for the other tensors Lij, Cij, and Rij due to linearity
of the filtering operation. Therefore all of the subgrid tensors transform correctly as
second-rank tensors (i.e. are covariant) under rotations.

3.2 Generalized Central Moments and

Averaging Invariance

In section 2.3.1, we showed that using a Reynolds operator for the average gives a simpler
form for the subgrid tensor in the filtered NSEs. Using the properties of a Reynolds
operator 〈 · 〉R and some simple algebra, we get the following relations for the central
moments 〈u′iu′j〉R and 〈u′iu′ju′k〉R:

〈u′iu′j〉R =〈uiuj〉R − 〈ui〉R〈uj〉R, (3.18)

〈u′iu′ju′k〉R =〈uiujuk〉R − 〈ui〉R〈u′ju′k〉R − 〈uj〉R〈u′ku′i〉R
− 〈uk〉R〈u′iu′j〉R − 〈ui〉R〈uj〉R〈uk〉R.

(3.19)

Germano (1992) explained that in statistical turbulence modelling, these relations are
used to derive evolution equations for the central moments. However, trying to do this
for a non-Reynolds averaging operator 〈 · 〉 results in a much more complicated system.
Instead of writing out long expressions for these moments, Germano (1992) proposed that
we formally define a set of generalised central moments that satisfy equivalent relations
to those above:

τ(ui, uj) =〈uiuj〉 − 〈ui〉〈uj〉, (3.20)

τ(ui, uj, uk) =〈uiujuk〉 − 〈ui〉τ(uj, uk)− 〈uj〉τ(uk, ui)

− 〈uk〉τ(ui, uj)− 〈ui〉〈uj〉〈uk〉.
(3.21)
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We define τ(ui, uj) to be the same as the subgrid-scale stress tensor τij that we defined
previously. From the relations (3.20) and (3.21), we can see that it is best to work in index
notation for manipulating the generalised central moments. We write the ith component
of the Navier–Stokes momentum equation as

∂ui
∂t

+
∂

∂xk
(uiuk) = − ∂p

∂xi
+ ν

∂2ui
∂xk∂xk

+ Fi. (3.22)

By multiplying this equation by uj, and adding it to the same equation with the indices
i and j switched, we obtain the equation2

∂(uiuj)

∂t
+

∂

∂xk
(uiujuk) =− ∂

∂xk

[
puiδjk + pujδik − ν

∂(uiuj)

∂xk

]
+ 2psij

− 2ν
∂ui
∂xk

∂uj
∂xk

+ uiFj + ujFi,

(3.23)

where sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the rate-of-strain tensor. We can now use this relation

to derive a further equation involving the generalised central moments. By applying
the filtering operation to (3.23), deriving a similar relation from the filtered NSEs, and
performing some further algebra, we obtain

∂τ(ui, uj)

∂t
+

∂

∂xk
(τ(ui, uj)〈uk〉) = − ∂

∂xk

{
τ(ui, uj, uk) + τ(p, ui)δjk

+τ(p, uj)δik − ν
∂τ(ui, uj)

∂xk

}
+ 2τ(p, sij)− 2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
− τ(ui, uk)

∂〈uj〉
∂xk

− τ(uj, uk)
∂〈ui〉
∂xk

+ τ(ui, Fj) + τ(uj, Fi).

(3.24)

This equation governs the evolution of the generalised central moments, and the key idea
to take away from it is that this relation does not depend on the filter operation. This
property is referred to as “averaging invariance” by Germano (1992), and it allows us to
derive extra relations to use in modelling turbulent flow.

For example, if we follow Germano (1992) in defining the generalised turbulent kinetic
energy density as

ET =
1

2
τ(ui, ui), (3.25)

and then contract relation (3.24) with δij, we obtain an evolution equation for the tur-
bulent kinetic energy density:

∂ET
∂t

+
∂(ET 〈uk〉)

∂xk
=− ∂

∂xk

[
1

2
τ(ui, ui, uk) + τ(p, uk)− ν

∂ET
∂xk

]
− ντ

(
∂ui
∂xk

,
∂ui
∂xk

)
− τ(ui, uk)〈sik〉+ τ(ui, Fi).

(3.26)

2We give a full derivation of equations (3.23), (3.24) & (3.26) in Appendix A.
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We can also use the generalised central moments to construct another decomposition of
the subgrid-scale stress tensor. In the spirit of the previously mentioned Leonard (1974)
decomposition, Germano (1992) proposed that the generalised second central moment
(i.e. the subgrid-scale stress tensor) can be decomposed purely in terms of generalised
central moments of the mean velocity and the fluctuation:

τ(ui, uj) = Lij + Cij +Rij, (3.27)

where

Lij = τ(〈ui〉, 〈uj〉), (3.28a)

Cij = τ(〈ui〉, u′j) + τ(u′i, 〈uj〉), (3.28b)

Rij = τ(u′i, u
′
j). (3.28c)

We can use the results of section 3.1 to analyse the properties of the new tensors in this
decomposition. In particular, τij = τ(ui, uj) was shown to be invariant under Galilean
transformations, so we know that Lij will be Galilean invariant since 〈u〉 transforms in
the same way as u (see (3.11) or (3.16)). The new Reynolds stress Rij will also be
Galilean invariant, since u′ is invariant under Galilean boosts and transforms as u does
under rotations from (3.16). Since

Cij = τ(ui, uj)− Lij −Rij, (3.29)

consists solely of invariant terms, the new cross-stress tensor Cij must also be Galilean
invariant. With this decomposition, we can impose Galilean invariance on any proposed
closure model, even when the resolved stresses Lij are modelled separately.

3.3 Realizability Conditions

Vreman et al. (1994) give the following three conditions for a tensor T to be positive
semidefinite:

Tii ≥ 0, for i ∈ {1, 2, 3}, (3.30)

|Tij| ≤
√
TiiTjj, for i, j ∈ {1, 2, 3}, (3.31)

det T ≥ 0. (3.32)

Schumann (1977) was the first to observe that the Reynolds stress tensor Rij should
satisfy these conditions, i.e. when using a statistical average in turbulence modelling,
the subgrid-scale stress tensor must be positive semidefinite. We will refer to equations
(3.30) to (3.32) as the ‘realizability conditions’ from now on. These are the properties
one would expect from a tensor of the form 〈u′iu′j〉 since it is constructed from the average
of a tensor product of a vector with itself.

As usual, things are not so simple when 〈 · 〉 is not a Reynolds operator. Instead
of trying to derive similar conditions for the subgrid-scale tensor τ from the filtered
equations, we will investigate the implications of imposing the realizability conditions
on τ . Vreman et al. (1994) suggested that ensuring the positivity of the generalised
turbulent kinetic energy (3.25) provides one justification for imposing these conditions.
For example, models that use ET to correspond with the physical notion of kinetic energy
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may become ill-defined if a negative value arises. If τ is positive semidefinite, we also
obtain the following upper bound directly from (3.31):

|τij| ≤ 2ET for all i, j. (3.33)

We will now follow the approach of Vreman et al. (1994) to prove that τ is positive
semidefinite if and only if the filter function G is non-negative. Firstly, suppose G ≥ 0
everywhere. For each x in the domain D, we define a subset Sx as the support of the
function ξ 7→ G(x − ξ), i.e. the closure of the set of ξ such that G(x − ξ) is non-zero.
Let Fx be the space of real functions on this subset. Now, as G ≥ 0 everywhere, we may
define an inner product on Fx by

[f, g] =

∫
Sx

G(x− ξ)f(ξ)g(ξ) dξ, for f, g ∈ Fx. (3.34)

We use the definition of τij and the preservation of constants property of the convolution
with G to show that τij can be expressed using this inner product:

τij =〈uiuj〉 − 〈ui〉〈uj〉, (3.35a)

=〈uiuj〉 − 〈ui〉〈uj〉 − 〈uj〉〈ui〉+ 〈ui〉〈uj〉, (3.35b)

=

∫
Sx

G(x− ξ)ui(ξ)uj(ξ) dξ − 〈ui〉(x)

∫
Sx

G(x− ξ)uj(ξ) dξ

− 〈uj〉(x)

∫
Sx

G(x− ξ)ui(ξ) dξ + 〈ui〉(x)〈uj〉(x)

∫
Sx

G(x− ξ) dξ,

(3.35c)

=

∫
Sx

G(x− ξ)(ui(ξ)− 〈ui〉(x))(uj(ξ)− 〈uj〉(x)) dξ, (3.35d)

=[ui(ξ)− 〈ui〉(x), uj(ξ)− 〈uj〉(x)] ≡ [vxi (ξ), vxj (ξ)], (3.35e)

where we define
vxi (ξ) = ui(ξ)− 〈ui〉(x). (3.36)

The final result (3.35e) says that τij must take the form known as a Gramian matrix
for each value of x. Such a matrix is always positive semidefinite,3 so the realizability
conditions are satisfied.

Conversely, now suppose that G(y) < 0 for some y in the domain D. If G is a
continuous function, we can define the following neighbourhood of y:

V = {η ∈ D : |η − y| < δ}, (3.37)

where δ > 0 is chosen such that G(η) < 0 for all η ∈ V . For each value of x we can also
define the set Wx by

Wx = {ζ ∈ D : x− ζ ∈ V }. (3.38)

Then, if we fix x and choose the function u1 such that u1(ξ) 6= 0 if ξ ∈ Wx and u1 = 0
everywhere else, τ11(x) must be negative:

τ11(x) = 〈u1
2〉(x)− (〈u1〉(x))2 ≤ 〈u1

2〉(x) =

∫
Wx

G(x− ξ)(u1(ξ))2 dξ < 0. (3.39)

3See Appendix B for a proof.
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This proves that if the filter is negative anywhere in the domain, then the subgrid tensor
is not positive semidefinite. Hence τ satisfies the realizability conditions (3.30) to (3.32)
if and only if the function G in the convolution filter is non-negative.

Of the three most common filters, introduced in the previous chapter, only the spectral
cutoff filter does not satisfy this positivity condition. Hence, this filter should not be
used in conjunction with a formulation which models the generalised turbulent energy.
However, this does not restrict use of the spectral cutoff filter in other LES models, where
it may prove to be the most suitable.

3.4 Material Frame–Indifference

One of the most interesting analogies to make when thinking about turbulence modelling
is between the subgrid-scale stresses and the elastic stresses inside non-Newtonian vis-
coelastic fluids. This was first suggested in a paper by Rivlin (1957) nearly 60 years ago,
merely on the observation of secondary motions in the flows in both cases. Deville &
Gatski (2012) provide a recent overview of the general principles involved in modelling
the extra stresses for non-Newtonian fluids and warn that these stresses, although similar
in some aspects to turbulent stresses (e.g. being second moments of a small-scale quan-
tity), are fundamentally different. In particular, the viscoelastic stresses arise from the
physical properties of the fluid, which typically contains suspended polymer molecules,
whereas the turbulent stresses are purely related to the flow properties.

Nevertheless, it is interesting to investigate the possibility of similarities between
these models. If the subgrid-scale stresses involved in LES share some mathematical
or physical property with the viscoelastic stresses then an idea previously developed
for modelling complex fluids could feasibly be adapted to improve the accuracy of a
turbulence model or vice versa. One of the key methodological principles that is applied
to the constitutive equations in any viscoelastic fluid model is Material Frame-Indifference
(MFI), as proposed in Truesdell (1952) and Rivlin & Ericksen (1955). More work has
been done on investigating MFI for conventional RANS turbulence models than for LES,
but there are sources of interest for us to consider, in particular a paper by Speziale
(1985b).

Speziale (1985b) follows a similar approach to that which we used earlier when in-
vestigating Galilean invariance. We now consider the more general Euclidean group of
transformations, those for which

x∗ = Q(t)x + b(t), t∗ = t+ a. (3.40)

Here Q(t) is any time-dependent orthogonal matrix, b(t) is any time-dependent vector
and a is a constant. Rearranging this expression and differentiating with respect to time
produces an equation for the velocity in the original frame in terms of the transformed
variables:

x = QT (x∗ − b), (3.41a)

u = ẋ = QT (ẋ∗ − ḃ) + Q̇T (x∗ − b), (3.41b)

u = QT
[
ẋ∗ − ḃ− Q̇QT (x∗ − b)

]
. (3.41c)

To obtain the last line, we have used that Q is orthogonal. The matrix Q̇QT is thus
anti-symmetric, so its action on a vector is equivalent to a wedge product with a vector
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−Ω(t), where Ω(t) is the angular velocity of the transformed frame relative to the original
frame (Woodhouse, 1987). Hence we can express u as

u = QT
[
u∗ + Ω(t) ∧ (x∗ − b(t))− ḃ(t)

]
. (3.42)

To investigate whether the subgrid-scale stress tensor is invariant under a general
change of frame, the above equation suggests that we must investigate how the filtered
position vector 〈x〉 transforms under (3.40). First, consider the filter acting on the posi-
tion vector in the original frame:

〈x〉 =

∫
D

G(x− ξ)ξ dξ. (3.43)

Using the substitution ξ = x− s, we can rewrite this integral as

〈x〉 =

∫
D

G(s)(x− s) ds, (3.44a)

= x

∫
D

G(s) ds−
∫
D

sG(s) ds. (3.44b)

By the preservation of constants property for a filter, the first term of this expression is
just x. The second integral will disappear if the filter function G is an even function.
This will happen if we enforce spherical symmetry of G (i.e. G(s) = G̃(|s|)) as suggested
in section 3.1. Hence, the position vector x is unchanged by filtering. Since the filter
operation is independent of time, position is also preserved in the transformed frame:

〈x∗〉 = Q(t)〈x〉+ b(t) = Q(t)x + b(t) = x∗. (3.45)

We can now write down expressions for the filtered velocity 〈u〉 and velocity fluctua-
tion u′:

〈u〉 = QT
[
〈u〉∗ + Ω ∧ x∗ − ḃ

]
, (3.46a)

u′ = QTu′
∗
. (3.46b)

Since the velocity fluctuation is only affected by the orientation of the frame, the Reynolds
stress tensor Rij must transform as a second-rank tensor under a rotation:

u′i = Qkiu
′∗
k, u′iu

′
j = Qkiu

′∗
ku
′∗
lQlj, (3.47)

which implies
R = QTR∗Q. (3.48)

This is promising, but if we insert expression (3.46a) for the filtered velocity into the
definition of the subgrid-scale stress tensor (2.31) we get

QτQT = τ ∗ − 〈(Ω ∧ x∗)u∗〉 − 〈u∗(Ω ∧ x∗)〉+ (Ω ∧ x∗)〈u〉∗ + 〈u〉∗(Ω ∧ x∗)

+ (Ω ∧ x∗)(Ω ∧ x∗)− 〈(Ω ∧ x∗)(Ω ∧ x∗)〉.
(3.49)

The above equation seems problematic, and it means that we cannot constrain our choice
of τ by imposing frame-indifference on the tensor. However, this is not where our analysis
of the filtered NSEs must stop for MFI. Speziale (1985b) showed that the divergence of
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the stress tensor ∇ · τ is in fact invariant under these Euclidean transformations, and
only ∇ · τ appears in the filtered NSEs.

To gain more insight on the situation in the transformed frame, it is useful to express
the Navier–Stokes equations in terms of the transformed variables. By differentiating the
expression for u from (3.41c), we can obtain a relation for the material derivative Du/Dt:

Du

Dt
= ẍ = QT ẍ∗ − 2QT Q̇QT (ẋ∗ − ḃ)−QT b̈− d

dt

(
QT Q̇QT

)
(x∗ − b), (3.50a)

= QT
[
ẍ∗ + 2Ω ∧ (ẋ∗ − ḃ)− b̈ + Ω ∧ (Ω ∧ (x∗ − b)) + Ω̇ ∧ (x∗ − b)

]
. (3.50b)

Replacing ẋ∗ with u∗, we get an expression for the Lagrangian acceleration of a fluid
element:

Du

Dt
= QT

[
Du∗

Dt∗
+ 2Ω ∧ (u∗ − ḃ)− b̈ + Ω ∧ (Ω ∧ (x∗ − b)) + Ω̇ ∧ (x∗ − b)

]
. (3.51)

We can identify the additional terms in (3.51):

• 2Ω ∧ (u∗ − ḃ) is the Coriolis force due to the frame rotation,

• −b̈ is the linear acceleration of the new frame relative to the original frame,

• Ω ∧ (Ω ∧ (x∗ − b)) is the relative centripetal acceleration,

• Ω̇∧ (x∗ − b) is the Poincaré (or Euler) force due to the angular acceleration of the
frame.

The pressure and viscous terms in the Navier–Stokes momentum equation will transform
as

p(x, t) = p∗(x∗, t), ∇ = QT∇∗, (3.52a)

∇p = QT∇∗p∗, (3.52b)

and
u = QT [u∗ + Ω ∧ x∗ − ḃ], ∇2 = ∇∗2, (3.53a)

∇2u = QT∇∗2u∗. (3.53b)

Thus, we can write the momentum equation (pre-multiplied by Q) in the transformed
variables as

Du∗

Dt∗
= −∇∗p∗ + ν∇∗2u∗ − 2Ω ∧ (u∗ − ḃ) + b̈

−Ω ∧ (Ω ∧ (x∗ − b))− Ω̇ ∧ (x∗ − b) +QF.
(3.54)

In the above equation, we have not yet dealt with how the body force transforms. If we
consider how F, the body force per unit mass, affects a single point by Newton’s second
law

F = ẍ, (3.55)

then the relation in (3.50a) gives the transformation

F = QT
[
F∗ + 2Ω ∧ (u∗ − ḃ)− b̈ + Ω ∧ (Ω ∧ (x∗ − b)) + Ω̇ ∧ (x∗ − b)

]
, (3.56)
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where F∗ is the effective body force per unit mass felt in the transformed coordinates. This
agrees with the approach of Ahmadi (1987), who investigated material frame-indifference
for turbulence models using ensemble averages.

Now, the transformed momentum equation (3.54) becomes

Du∗

Dt∗
= −∇∗p∗ + ν∇∗2u∗ + F∗. (3.57)

Checking that the mass conservation equation ∇ · u = 0 takes the same form in the new
frame, we have shown that the Navier–Stokes equations are covariant, provided we define
F∗ to include the extra fictitious forces brought about by the change to a non-inertial
frame.

Speziale (1985b) did not consider a body force acting on the fluid, so the fictitious
forces introduced by the rotating frame meant that the momentum equation did not
take the same form after transformation. However Ahmadi (1987) realised that the extra
terms took the expected form for these fictitious forces, as we showed above. Since the
NSEs take the same form in the transformed frame, the filtered equations derived in
either frame will also take the same form. Thus, the filtered NSEs with a body force are
frame invariant provided that the body force transforms in a way that takes care of the
appearance of fictitious forces in a rotating frame.
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Chapter 4

Dynamic Eddy Viscosity Models

4.1 The Eddy Viscosity Hypothesis

Richardson (1922) introduced the idea of an energy cascade, where energy enters the flow
at large scales and is transferred locally in wavenumber space to smaller scales. Eventu-
ally, the energy is dissipated by viscous effects, which become important at sufficiently
small length scales. As mentioned in Chapter 1, Kolmogorov (1941) proposed that in
the inertial range, the energy flux in wavenumber space should be independent of the
wavenumber k. It therefore makes sense for the subgrid tensor τ to reproduce the effect
of this constant energy flux, since τ represents the interaction between the resolved scales
and the subgrid scales.

Berselli et al. (2006) noted that Boussinesq proposed an Eddy Viscosity hypothesis in
1877, well before the idea of an energy cascade was introduced, by suggesting an analogy
between Brownian motion and the interactions of the small eddies. We can apply this
idea to LES by introducing a subgrid viscosity νsgs ≥ 0 to model the interactions of the
subgrid-scale fluctuations with the resolved scales. Mathematically, we express this as

τ d = 2νsgs〈s〉, (4.1)

where

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.2)

is the rate-of-strain tensor for the fluid, the symmetric part of the velocity gradient, and

τ dij = τij −
1

3
δijτkk, (4.3)

is the deviatoric (traceless) part of the subgrid-scale stress tensor. We choose to use this
form in (4.1) so that the model remains consistent with incompressible flows, in which s
is traceless:

skk = ∇ · u = 0. (4.4)

Relating τ to the rate-of-strain tensor s as in (4.1) is a good idea, since s satisfies all
of the physical conditions that we discussed for τ in Chapter 3. We also note that de-
composing a general rank-2 tensor into its antisymmetric, trace, and symmetric-traceless
parts is the most general decomposition that is irreducible under rotations. Thus, our
definition of the symmetric tensor τ in terms of its deviatoric part is justified, so long as
our model for νsgs is also frame-indifferent.
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We can add the trace of τ to the filtered pressure term, so it is calculated explic-
itly from the filtered NSEs, and does not need prescribing. In practice, care must be
taken here, since the calculated average pressure may take an inaccurate value when the
generalized subgrid kinetic energy becomes large (i.e. τkk is large) (Sagaut, 2006). This
provides further justification for imposing the realizability conditions discussed in section
3.3, which provide us with an upper bound for the turbulent kinetic energy.

Using the eddy viscosity hypothesis (4.1), the closure problem for the filtered NSEs
is now reduced to finding an appropriate choice of the single scalar νsgs instead of trying
to prescribe every component of τ . An overview of the development of this problem will
now be discussed in the following sections.

4.2 The Smagorinsky Model

One of the simplest implementations of the eddy viscosity idea was first used for atmo-
spheric flows by Smagorinsky (1963). This model is derived using two assumptions:

1. The dimensional analysis result

νsgs ∝ ∆4/3E1/3, (4.5)

where ∆ is the characteristic cutoff length scale of the filter, and E is the turbulent
dissipation density. In Chapter 1, we considered the volume integral of E , which we
referred to as ε, when describing the work of Kolmogorov (1941).

2. The turbulent dissipation density E is given by

E = −τij〈sij〉 = −τ dij〈sij〉, (4.6)

as obtained from equation (3.26) for the evolution of the generalized turbulent
energy.

By substituting (4.6) into (4.5), and using the eddy viscosity assumption (4.1) we obtain

ν3
sgs ∝ ∆4τ dij〈sij〉, (4.7a)

ν3
sgs ∝ ∆4νsgs〈sij〉〈sij〉. (4.7b)

Rearranging this gives us the final model:

νsgs = cS∆2 (〈sij〉〈sij〉)1/2 , (4.8)

where cS is a constant, known as the Smagorinsky coefficient. Now, apart from the filter
itself, this constant is the only parameter that needs to be prescribed in the model. Lilly
(1967) compared the turbulent dissipation of this model to the theoretical dissipation
using the ideas of Kolmogorov (1941) and concluded that, assuming the turbulence is
homogeneous and isotropic, the correct value to use was cS

1/2 = 0.17. However, in practice
the Smagorinsky coefficient has often been determined experimentally, and Lilly’s value is
typically too large (Berselli et al., 2006). In fact, when cS is adjusted to improve results,
different optimum values are obtained for different flows. Hence, the Smagorinsky model
is not suited to modelling flows which exhibit multiple behaviours, e.g. flows undergoing
transition to turbulence.
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4.3 Germano’s Dynamic Model

To overcome some of these issues with the Smagorinsky model, Germano (1992) proposed
a model in which the coefficient cS is determined dynamically at each stage of the numer-
ical simulation. This is achieved by introducing a second ‘test’ filter at a slightly larger
scale, and comparing what happens at this level to the existing filtered equations using
a tensor relation now known as the Germano identity.

4.3.1 The Germano Identity

To avoid confusion, we will now refer to the filter used previously as the G-level filter
and denote the filtered velocity by 〈u〉. We define the test filter to be the T -level filter
denoted by a bar symbol. The convolution definition of a filter operation establishes that
these filters commute (TG = GT ), so we may also define the doubly-filtered velocity as

〈u〉 = 〈u〉. (4.9)

Now we must recall the notation of section 3.2, where τ(ui, uj) was used instead of
the subgrid stress tensor τij so that further generalised central moments could be defined.
This allows us to easily differentiate between the subgrid-scale stresses at different levels
of filtering:

τG(ui, uj) = 〈uiuj〉 − 〈ui〉〈uj〉, (4.10a)

τT (ui, uj) = uiuj − ui uj, (4.10b)

τGT (ui, uj) = 〈uiuj〉 − 〈ui〉 〈uj〉. (4.10c)

By some simple rearranging of (4.10c), we arrive at the key tensor relation identified by
Germano (1992):

τGT (ui, uj) = 〈uiuj〉 − 〈ui〉 〈uj〉+ 〈ui〉〈uj〉 − 〈ui〉〈uj〉, (4.11a)

= 〈uiuj〉 − 〈ui〉〈uj〉+ 〈ui〉〈uj〉 − 〈ui〉 〈uj〉, (4.11b)

which implies τGT (ui, uj) = τG(ui, uj) + τT (〈ui〉, 〈uj〉). (4.12)

The final term in (4.12) is expressed using only the filtered velocities. Germano (1992)
gave a physical interpretation of identity (4.12) as “the turbulent stress at the GT -level
is equal to the T -averaged value of the turbulent stress at the G-level plus the resolved
turbulent stress τT (〈ui〉, 〈uj〉) extracted from the resolved scale G.”

4.3.2 Germano’s Method

To see how identity (4.12) will help us turn the Smagorinsky model into a dynamic model,
we try substituting the expression for τG(ui, uj) obtained from the Smagorinsky model
into the Germano identity. The full expression for the stress tensor comes from combining
the eddy viscosity assumption (4.1) with the derived eddy viscosity expression (4.8):

τ dG(ui, uj) = −2cS∆2 (〈skl〉〈skl〉)1/2 〈sij〉. (4.13)

As before, the left side of this equation represents the deviatoric part of the subgrid-scale
stress tensor:

τ dG(ui, uj) = τG(ui, uj)−
1

3
δijτG(uk, uk). (4.14)
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Replacing the unresolved terms in the Germano identity (4.12) with the above expression
gives

− 2cS∆2
(
〈skl〉 〈skl〉

)1/2

〈sij〉 = −2cS∆
2

(〈skl〉〈skl〉)1/2〈sij〉+ τ dT (〈ui〉, 〈uj〉), (4.15)

where ∆ is the characteristic length scale of the test filter. Meneveau & Katz (2000)
pointed out that this step assumes that cS is scale invariant, i.e. that cS should take the
same value at the test scale as at the resolved scale. Since they also noted that the most
commonly used test scale is ∆ = 2∆, this is a reasonable assumption to make.

Equation (4.15) in fact consists of 5 separate equations, since τ d is a traceless, sym-
metric 3 × 3 tensor. Hence, each of the 5 components of (4.15) would be satisfied by a
(typically) different value of cS. To obtain a single value for cS, Germano proposed that
we define the dissipation at the GT -level to be

EGT = −τ dGT (ui, uj)〈sij〉, (4.16)

motivated by our earlier assumption (4.6). Contracting equation (4.15) with 〈sij〉 gives
us a single equation for calculating the value of cS at each grid point, which relates the
dissipation at the different filter levels.

We now have a self-adapting model that will adjust its parameters to suit the flow
regime. This means that the model behaves more realistically than the Smagorinsky
model in important situations such as transitions between turbulent and laminar flow
(Germano et al., 1991). However, there are weaknesses in the method. For example,
Ghosal et al. (1995) pointed out that in obtaining equation (4.15) we have taken cS
outside of the T -filter on the right as if it were a constant. This has no real justification
now we are using a dynamic method to calculate cS at each point on our grid, so more
care should be taken.

The remaining sections in this chapter will outline further areas where Germano’s
model needs development. We will show how modifications to Germano’s dynamic model
have been made to retain its modelling advantages while improving the mathematical
basis on which it is founded.

4.3.3 Lilly’s Improvement

For notational convenience, from now on we will return to using τij as the subgrid stress
tensor, with Tij denoting the GT -scale tensor previously defined as τGT (ui, uj). The
Germano identity (4.12) can then be rewritten as

Kij = Tij − τij, (4.17)

where Kij = τT (〈ui〉, 〈uj〉) is the resolved stress. In this concise notation, we can rewrite
the particular relation (4.15) as

Kd
ij = cS(αij − βij), (4.18)

where

αij = −2∆2
(
〈skl〉 〈skl〉

)1/2

〈sij〉, (4.19a)

βij = −2∆
2

(〈skl〉〈skl〉)1/2〈sij〉. (4.19b)
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Contracting with 〈sij〉 gives the following expression for cS:

cS =
Kij〈sij〉

(αij − βij)〈sij〉
. (4.20)

In an incompressible flow, sij is traceless, so there is no need to specify the deviatoric
part of Kij. However, when using (4.20) cS can become indeterminate, with problems
arising when the rate-of-strain tensor sij is small. Small values of sij mean that the flow
is relatively smooth so the filter has less effect on the flow quantities. Hence, αij and βij
will take similar values. As Germano et al. (1991) found, this can lead to the computation
becoming unstable, so they averaged the numerator and denominator over planes parallel
to the boundaries, assuming homogeneity of the flow in these directions. This approach
cannot be used for inhomogeneous flows in complex domains.

Lilly (1992) proposed an alternative method to remove the redundancy in relation
(4.18). Since a single value of cS cannot typically satisfy all 5 independent components
of the tensor relation, Lilly (1992) proposed taking a least squares approach to optimise
the choice of cS. First, we define the error tensor Eij by

Eij = Kd
ij − cS(αij − βij). (4.21)

In a least squares approach, we want to find the cS that minimises the quantity Q =
EijEij. Differentiating this quantity gives

∂Q

∂cS
= 2(αij − βij)

(
cS(αij − βij)−Kd

ij

)
, (4.22)

and setting this derivative to zero to find an extremum produces a new expression for the
Smagorinsky coefficient:

cS =
Kij(αij − βij)
(αij − βij)2

. (4.23)

Differentiating Q again confirms that this value does indeed minimise the square of the
error:

∂2Q

∂cS2
= 2(αij − βij)2 ≥ 0. (4.24)

The new cS expression (4.23) has the advantage of only becoming indeterminate when
all of the components of αij − βij are zero.

The numerator of (4.23) can be either positive or negative locally. A negative value
would indicate a negative eddy viscosity, which causes the opposite action to that sug-
gested by the Boussinesq hypothesis: the kinetic energy would be transferred from the
small scales to the large scales. This is known as backscatter and does occur in fluid flow
due to the randomness inherent in turbulence. In fact, Piomelli et al. (1991) found from
performing DNS for turbulent flow that the energy transfer between scales is large in
both directions, and the eddy viscosity hypothesis of a mean diffusive effect is only valid
due to a slight difference favouring the transfer to smaller scales. However, in regions
near boundaries, the mean energy transfer was found to be reversed, which casts doubt
on the validity of eddy viscosity models close to walls.

Hence, Lilly regarded the possibility of a negative subgrid viscosity as an advantage
for the dynamic model, although negative values of cS have since been found to cause
numerical instabilities when the model is actually implemented (Meneveau & Katz, 2000).
Intuitively, this makes sense as a negative subgrid viscosity would correspond analytically
to a backward diffusion equation. This problem is well-known to be ill-posed, and can
have solutions blowing up in infinitesimal time (Ockendon et al., 1999).
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4.4 A Constrained Variational Formulation

Ghosal et al. (1995) appreciated the advantage of the dynamic model in being self-
calibrating for any flow situation, and formulated a new approach to overcome the de-
ficiencies of the original Germano model. Some earlier papers (e.g. Zang et al., 1993)
attempted to adapt Germano’s method for use in inhomogeneous flows by averaging over
a small neighbourhood of grid points, rather than a symmetry plane, to smooth out
variations in cS, and sometimes ‘clipped’ negative values by setting them to zero.

This approach seemed rather “ad hoc” to Ghosal et al. (1995), who proposed a more
mathematically consistent model for calculating the value of the Smagorinsky coefficient
cS. As noted before, we will start by correcting a rather brash assumption made in the
derivation of Germano’s method. When progressing from the Germano identity (4.17),
substituting in the Smagorinsky closure model should have given us

Kd
ij = cSαij − cSβij, (4.25)

where αij and βij are defined as before in (4.19a) and (4.19b). Since we are taking
cS = cS(x, t), this coefficient remains inside the test filter operation, whereas before it
was taken outside. Now we may redefine the error that Lilly (1992) proposed, but with
our new consistent tensor relation:

Eij(x, t) = Kd
ij − cSαij + cSβij. (4.26)

Ghosal et al. (1995) pointed out that minimising the square of the error locally, as
Lilly (1992) suggested, is flawed. Changing cS to minimise the value of Q = EijEij at one
location would alter the value of Q at adjacent points due to cS being inside the filter in
the last term of (4.26). Therefore, we should use the calculus of variations to minimise
the spatial integral of Q as a functional of cS at each time t:

F [cS](t) =

∫
D

Eij(x, t)Eij(x, t) dx. (4.27)

In the following derivation we will neglect time dependence, since each minimisation is
performed at a particular time t. Consider a small variation cS → cS + δcS. Under this
variation, the functional F becomes

F [cS + δcS] =

∫
D

(Eij + δEij)(Eij + δEij) dx, (4.28)

where δEij = −δcSαij + δcSβij. Expanding this out gives

F [cS + δcS] =

∫
D

EijEij dx + 2

∫
D

EijδEij dx +O(δEij
2), (4.29a)

= F [cS] + δF [cS] +O(δcS
2), (4.29b)

where δF is the first variation of the functional, as defined by

δF [cS] =
d

dε

∣∣∣∣
ε=0

F [cS + εδcS]. (4.30)

To find the Euler–Lagrange equation that can be used to calculate the minimising
function cS, we set the first variation δF to zero. The O(δEij

2) term arising from (4.28)
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is the integral of a positive quantity, so this ensures that we get a minimum for F , not
another type of stationary value. Using the definition of δEij from above, δF can be
written as

δF =− 2

∫
D

αij(x)Eij(x)δcS(x) dx

+ 2

∫
D

Eij(x)

∫
D

GT (x− y)βij(y)δcS(y) dy dx,

(4.31)

where GT is the convolution kernel corresponding to the test filter. Swapping the inde-
pendent variables in the second integral, combining the terms, and setting δF to zero
gives ∫

D

(
−αij(x)Eij(x) + βij(x)

∫
D

GT (y − x)Eij(y) dy

)
δcS(x) dx = 0. (4.32)

This integral equation must hold for all small variations δcS, which implies the Euler–
Lagrange equation

− αij(x)Eij(x) + βij(x)

∫
D

GT (y − x)Eij(y) dy = 0. (4.33)

We can now use the earlier definition of Eij in (4.26) to express this integral equation in
terms of cS

−αijKd
ij + βij

∫
D

Kd
ij(y)GT (y − x) dy

= αij[−αijcS + βijcS ]− βij
∫
D

G(y − x)[−αijcS + βijcS ](y) dy.

(4.34)

Ghosal et al. (1995) spotted that dividing both sides by αklαkl gives a Fredholm integral
equation of the second kind:

f(x) = cS(x)−
∫
D

K(x,y)cS(y) dy, (4.35)

where

f(x) =
1

αkl(x)αkl(x)

[
αij(x)Kij(x)− βij(x)

∫
D

Kij(y)GT (y − x) dy

]
, (4.36)

and

K(x,y) =
1

αkl(x)αkl(x)

[
αij(x)βij(y)GT (x− y) + αij(y)βij(x)GT (y − x)

− βij(x)βij(y)

∫
D

G(z− x)G(z− y) dz

]
.

(4.37)

If we define the right hand side of this equation to be the integral operator L, then as
long as there are no eigenfunctions c0 which satisfy Lc0 = 0, the above equation will
always have a unique solution (Collins, 2006).

This formulation resolves the issue of removing cS from the filter, but does not tackle
the instability problem of the dynamic model. Ghosal et al. (1995) proposed two methods
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for overcoming this, the first of which requires that cS be non-negative. To achieve this,
they introduced a new variable γ and wrote cS = γ2. Reformulating the integral (4.32)
with δcS(x) = 2γ(x)δγ(x) and Eij = Kd

ij − γ2αij + γ2βij,∫
D

(
−αij(x)Eij(x) + βij(x)

∫
D

GT (y − x)Eij(y) dy

)
γ(x)δγ(x) dx = 0. (4.38)

This gives us a new Euler–Lagrange equation(
−αij(x)Eij(x) + βij(x)

∫
D

GT (y − x)Eij(y) dy

)
γ(x) = 0. (4.39)

However, we now always have γ(x) = 0 as a solution, in addition to γ(x) = cS(x)1/2

where cS(x) is a positive solution to (4.35). To avoid this trivial second solution, while
still enforcing cS(x) ≥ 0, we can use the iterative procedure

c
(n+1)
S (x) =

{
f(x) +

∫
D
K(x,y)c

(n)
S (y) dy, if this ≥ 0,

0, otherwise.
(4.40)

Although we have not established that this iteration always converges, Ghosal et al. (1995)
found no issues from lack of convergence in their numerical simulations. We now have
a dynamic model which remains stable in flows without any symmetry (inhomogeneous
flows). This is a key development over the previous models by Germano et al. (1991) and
Lilly (1992), which would become unstable in these regimes.

The second formulation proposed by Ghosal et al. (1995) involves modelling the
backscatter process to allow negative values of cS without causing instability in its calcu-
lation. This model is rather elaborate, and we will not cover the finer details here. The
key idea is that the energy spectrum E(k), introduced in Chapter 1, must be realizable,
in the sense that (Sagaut, 2006)

E(k) ≥ 0 for all k, (4.41)

since (1.4) defines E(k) as the integral of a non-negative quantity. The subgrid-scale
kinetic energy ET (recall (3.25)) is added as a variable in the system, along with a
transport equation which ensures (4.41). Now, when cS becomes negative, ET decreases.
When the energy contained at the subgrid level reaches zero the subgrid stresses τij, and
hence cS, must also be zero. This means that a negative value of cS does not lead to
computational instability.

Carati et al. (1995) showed that the dynamic Ghosal et al. (1995) model which in-
cludes an equation for ET produces more accurate results for numerical simulations of
isotropic turbulence than the original dynamic models of Germano et al. (1991) and Lilly
(1992). In fact, all of the developments throughout this chapter have improved the accu-
racy of simulations produced by eddy viscosity models, reassuring us that improving the
mathematical underpinnings of a model should also improve the results we obtain when
using it.
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Chapter 5

Regularized Models

In this chapter, we describe an alternative approach for finding a closure model for τ .
Unlike in Chapter 4, this approach does not produce models which satisfy the constraints
derived in Chapter 3, and so requires modification.

5.1 Leray Regularization

5.1.1 Leray’s 1934 Paper

Although the Navier–Stokes equations have been ubiquitous in the field of fluid mechanics
for some time, mathematical understanding of their solutions is limited. In fact, one of
the Clay Mathematics Institute’s (unsolved) Millenium Prize Problems is to establish ex-
istence and regularity of solutions to the Navier–Stokes equations in R3 (Ladyzhenskaya,
2003; Fefferman, 2000).

Much of the work in trying to prove existence and regularity of solutions of the NSEs
can trace its roots back to a ground-breaking paper by Leray (1934), which introduced the
idea of weak solutions of the Navier–Stokes equations (referred to as “turbulent solutions”
in that paper). Leray (1934) proposed a regularized form of the Navier–Stokes equations
that smoothed out the advective term, resulting in the following equations:

∇ · u = 0, (5.1)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u, (5.2)

where u is defined by

u(x, t) = [φε ∗ u](x, t) =

∫
R3

φε(x− ξ)u(ξ, t)dξ, (5.3)

and φε ∈ C∞0 (R3) is a smooth ‘mollifying’ function which integrates to 1 over R3, and is
assumed to have compact support within a ball of radius ε (i.e. supp(φε) ⊂ B(0, ε)).

Leray proved that, for periodic boundary conditions and smooth initial conditions,
equations (5.1) and (5.2) have a unique solution, and that this solution remains bounded
for all time.
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5.1.2 Interpretation as a LES Model

From an analytical perspective, the result is most interesting in the limit when ε → 0,
since it provides insight into weak solutions of the NSEs. However, in the context of this
dissertation, we can use this uniqueness result as justification for a different approach to
LES.

Leray’s definition of a smoothed velocity u closely resembles that of the filtered veloc-
ity introduced in LES. Following the approach of Geurts & Holm (2003), if we perform
this smoothing operation to the whole of Leray’s momentum equation (5.2), and denote
the average by the same filtering notation as before, a familiar equation arises:

∂〈u〉
∂t

+∇ · (〈u〉〈u〉) = −∇〈p〉+ ν∇2〈u〉 − ∇ ·m, (5.4)

where the tensor m is now defined as

mij = 〈〈ui〉uj〉 − 〈ui〉〈uj〉. (5.5)

If we choose a filtering operation with a known inverse operator L, such as a differential
filter as introduced in section 2.2.1, we can express the Leray stress tensor m in terms of
the filtered velocity components:

mij = 〈〈ui〉L(〈uj〉)〉 − 〈ui〉〈uj〉. (5.6)

This tensor is asymmetric, so very little of what was discussed in chapter 3 can be
applied directly to the Leray stress tensor. However, compared to applying this idea to
the previous subgrid-scale stress tensor, so that

τij = 〈L(〈ui〉)L(〈uj〉)〉 − 〈ui〉〈uj〉, (5.7)

the Leray model produces more regular numerical solutions. According to Geurts & Holm
(2003), when using the modified Helmholtz filter from section 2.2.1, model (5.7) “does not
provide sufficient smoothing and leads to unstable LES on coarse grids”. Since analytic
solutions to Leray’s regularized equations are more well-behaved, regarding smoothness
and boundedness, than solutions to the NSEs, it makes sense that the implementation of
Leray’s equations as a numerical model improves simulation results.

Using the modified Helmholtz filter

L(〈u〉) = 〈u〉 − α2∇2〈u〉, (5.8)

the Leray stress tensor becomes

mij = α2ui∇2〈uj〉. (5.9)

We will use α as the cutoff length scale for the filter in this chapter, rather than ∆, to
avoid confusion with differential operators. In this case, we can see that the tensor is
formally small, with |m| ∼ α2. Since the Leray tensor is not of the same form as the
subgrid-scale stress tensor, we should take a different approach when considering how the
regularized equations transform under a generic change of reference frame. Guermond
et al. (2003) asserted that “a necessary and sufficient condition for frame indifference is
that the momentum equation [can] be expressed in the form

∂u

∂t
+ u · ∇u = ∇ · (qI + T), (5.10)
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where q is a scalar function, I the identity tensor and T a frame-indifferent tensor.”
This is a stronger condition than the one we derived for τ and the filtered equations in
chapter 3, when we showed that ∇ · τ should be frame-indifferent, even if τ itself is not.
We will thus require the momentum equation to take the form (5.10), with ∇ · T being
frame-indifferent.

Using this result, we can investigate Leray’s regularized equations by writing the
momentum equation in the form

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u− (〈u〉 · ∇u− u · ∇u) . (5.11)

Comparing the above equation with condition (5.10), we can see that the regularized
equations can only be frame-indifferent if 〈u〉 · ∇u − u · ∇u can be expressed as the
frame-indifferent divergence of a tensor. Hence, this expression must be also exhibit frame
indifference itself. However, from Chapter 3 we know that u′ = u − 〈u〉 is indifferent
under a general Euclidean transformation, but the tensor ∇u is not:

x∗ = Q(t)x + b(t), QQT = I, (5.12a)

u = QT (u∗ − Q̇QT (x∗ − b)− ḃ), (5.12b)

so

(∇u)ij =
∂uj
∂xi

= Qlj

(
∂ul
∗

∂xk∗
+ Ω∧lm

∂xm
∗

∂xk∗

)
Qki. (5.12c)

In vector notation, this becomes

∇u = QT∇∗u∗Q+ Ω∧, where Ω∧ = QQ̇T = −Q̇QT . (5.13)

Note that we are now using Ω∧ to represent the antisymmetric tensor, rather than ex-
pressing multiplication by this tensor with a cross product as in chapter 3. Since Ω∧ is
antisymmetric, we can also define it in the sense of a vorticity tensor, using (5.13):

Ω∧ =
1

2

(
∇u− (∇u)T

)
. (5.14)

Leray’s regularized equations are therefore not frame indifferent, so using them as the
basis for a model for the Navier–Stokes equations may cause problems when simulating
a rotating fluid. We should now check the filtered equations themselves to ensure that
our suspicions about this model are correct. To do this, we must introduce the Jaumann
derivative s̆, the corotational form of the material derivative of the rate-of-strain tensor,
i.e.

s̆ = QT Ds∗

Dt
Q, where s =

1

2

(
∇u + (∇u)T

)
. (5.15)

This quantity was originally proposed for use in a rheological context, and has been useful
for developing rotationally invariant models of viscoelastic fluids (see Bird et al., 1977).
We can also derive an alternative form for the Jaumann derivative by performing the
chain rule on Ds∗/Dt:

Ds∗

Dt
= Q̇sQT +Q

Ds

Dt
QT +QsQ̇T , (5.16)

which, after pre-multiplication by QT and post-multiplication by Q, gives

s̆ =
∂s

∂t
+ u · ∇s + s ·Ω∧ −Ω∧ · s. (5.17)
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Guermond et al. (2003) stated that the T that appears in the momentum equation
(5.10) is frame-indifferent if and only if it depends only on the rate-of-strain tensor s
and its Jaumann derivative s̆. To take advantage of this condition, we can obtain the
Helmholtz-filtered equations in an alternative way, and apply the inverse operator L to
the Leray momentum equation (5.11) directly:

∂

∂t

(
(1− α2∇2)〈u〉

)
+ 〈u〉 · ∇

(
(1− α2∇2)〈u〉

)
= −∇〈p〉+ ν∇2

(
(1− α2∇2)〈u〉

)
.

(5.18)

This rearranges into

∂〈u〉
∂t

+ 〈u〉 · ∇〈u〉 = −∇〈p〉+ ν∇2〈u〉

+ α2

[
∂

∂t

(
∇2〈u〉

)
+ 〈u〉 · ∇(∇2〈u〉)− ν∇4〈u〉

]
.

(5.19)

To apply the frame-indifference condition stated above to the filtered equation, we need
to consider the Jaumann derivative of the filtered variables. Since the filter operation
commutes with derivatives, the divergence of 〈̆s〉 is given by (Guermond et al., 2003)

2∇ · 〈̆s〉 =
∂

∂t
(∇ · 〈s〉) + 〈u〉 · ∇(∇2〈u〉) +∇(〈s〉 : 〈s〉) + (∇〈u〉)T · ∇2〈u〉, (5.20)

where

〈s〉 =
1

2
(∇〈u〉+ (∇〈u〉)T ), 〈s〉 : 〈s〉 = 〈sij〉〈sij〉, (5.21)

and (
(∇〈u〉)T · ∇2〈u〉

)
i

=
∂〈uj〉
∂xi
∇2〈uj〉. (5.22)

Noting that ∇ · 〈s〉 = ∇2〈u〉, we spot that the first two terms of this divergence agree
with terms in the filtered equation (5.19). Thus, we can write

∂〈u〉
∂t

+ 〈u〉 · ∇〈u〉 = ∇·
(
(−〈p〉+ α2〈s〉 : 〈s〉)I + 2ν(1− α2∇2)〈s〉+ 2α2〈̆s〉

)
− α2(∇〈u〉)T · ∇2〈u〉.

(5.23)

Comparing this with frame-indifference condition (5.10) from Guermond et al. (2003),
we can see that an extra term has appeared, namely −α2(∇〈u〉)T ·∇2〈u〉. Previous results
(see (5.13) and (3.53b)) establish that this extra term is not frame-indifferent, so the
direct implementation of Leray’s regularization as a model is not necessarily applicable
for rotating fluids. However, it is worth noting that this term is proportional to α2, so
the error is often relatively small.
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5.2 Navier–Stokes–α Model

To go about formulating a frame-indifferent adaptation of Leray’s regularized equations
we could just subtract the term that caused a problem in the last section from the
equations. However, we gain more mathematical insight by first writing the Navier–
Stokes momentum equation in an alternative form that is often used for rotational flows:

∂u

∂t
+ (∇∧ u) ∧ u = −∇

(
p+

1

2
|u|2
)

+ ν∇2u. (5.24)

Using the same idea that Leray (1934) used to smooth equation (5.2), we can put the
average velocity in the vorticity wedge term to obtain

∂u

∂t
+ (∇∧ u) ∧ 〈u〉 = −∇

(
p+

1

2
|u|2
)

+ ν∇2u. (5.25)

The following tensor calculus identities will help us manipulate this new equation:

(∇∧ u) ∧ 〈u〉 = 〈u〉 · ∇u− (∇u)T · 〈u〉, (5.26a)

∇(u · 〈u〉) = (∇u)T · 〈u〉+ (∇〈u〉)T · u. (5.26b)

The vorticity-smoothed momentum equation (5.25) now becomes

∂u

∂t
+ 〈u〉 · ∇u + (∇〈u〉)T · u = −∇P + ν∇2u, (5.27)

where P = p+ 1
2
|u|2 − u · 〈u〉 is the modified pressure.

Before we try to relate these equations to the usual form of LES models, it is worth
noting that we can prove a very interesting result for solutions to the above equation.
Firstly, define the circulation around a closed material curve C(t) being convected by the
actual flow velocity u as

Γ =

∫
C(t)

u · dx. (5.28)

Now consider the circulation around a closed curve Ĉ(t) which is convected by the filtered
velocity 〈u〉 instead. This can be expressed in terms of Lagrangian variables X, that move
with the filtered flow velocity over time, as

Γ̂ =

∫
Ĉ(t)

u · dx =

∫
Ĉ(0)

ui
∂xi
∂Xj

dXj. (5.29)

The velocity inside the integral is still the actual velocity of the flow, while the closed
curve Ĉ(t) is convected with the filtered velocity. Differentiating the circulation Γ̂ with
respect to time gives

dΓ̂

dt
=

∫
Ĉ(0)

D

Dt

(
ui
∂xi
∂Xj

)
dXj, (5.30)

where D/Dt is the material derivative following the filtered Langrangian variables, i.e.

D

Dt
=

(
∂

∂t
+ 〈u〉 · ∇

)
,

Dx

Dt
= 〈u〉. (5.31)
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We now use the product rule and apply the above definition:

dΓ̂

dt
=

∫
Ĉ(0)

(
Dui
Dt

∂xi
∂Xj

+ ui
∂〈ui〉
∂Xj

)
dXj, (5.32a)

=

∫
Ĉ(t)

Dui
Dt

dxi +

∫
Ĉ(t)

ui
∂〈ui〉
∂xj

dxj, (5.32b)

=

∫
Ĉ(t)

(
∂u

∂t
+ 〈u〉 · ∇u + (∇u)T · u

)
· dx. (5.32c)

Now we can use the smoothed momentum equation (5.27) to derive the following result:

dΓ̂

dt
=

∫
Ĉ(t)

ν∇2u · dx. (5.33)

The above equation is essentially Kelvin’s circulation theorem (as in Acheson, 1990)
but with the curve Ĉ being convected with the filtered velocity 〈u〉. This gives further
physical justification for smoothing the momentum equation as we did in (5.25), and is
in fact the result from which this approach, known as the Navier–Stokes-α model, was
originally developed (see Foias et al., 2001). Marsden & Shkoller (2002) refer to this
technique as Lagrangian Averaged Navier–Stokes (LANS), since the idea of following the
average fluid velocity used above is the key difference in thinking between regular LES
models and this approach.

With this physical interpretation established, let us return to the vorticity-smoothed
equation (5.27). Comparing this with the standard form of Leray’s momentum equation,
it appears that the only difference has arisen in the term (∇〈u〉)T · u and the modified
pressure P . To investigate how these terms are expressed in the filtered equations, we
apply the Helmholtz inverse operator to the velocities in each quantity:

(∇〈u〉)T · u = (∇〈u〉)T · (〈u〉 − α2∇2〈u〉), (5.34a)

= (∇〈u〉)T · 〈u〉 − α2(∇〈u〉)T · ∇2〈u〉, (5.34b)

= ∇
(

1

2
|〈u〉|2

)
− α2(∇〈u〉)T · ∇2〈u〉. (5.34c)

In the final line above we have made use of a particular case of the tensor calculus identity
in (5.26b) when u = 〈u〉.

P = p+
1

2
|u|2 − u · 〈u〉, (5.35a)

= p+
1

2
(|〈u〉|2 − 2α2〈u〉 · ∇2〈u〉+ α4|∇2〈u〉|2)− |〈u〉|2 + α2〈u〉 · ∇2〈u〉, (5.35b)

= p− 1

2
(|〈u〉|2 + α4|∇2〈u〉|2). (5.35c)

Substituting expressions (5.34c) and (5.35c) into the vorticity-smoothed equation (5.27)
without performing any further filtering or inversion operations gives us

∂u

∂t
+ 〈u〉 · ∇u− α2(∇〈u〉)T · ∇2〈u〉 = −∇p̂+ ν∇2u, (5.36)

where p̂ = p + 1
2
α4|∇2〈u〉|2. Comparing this with the Leray implementation model, we

now satisfy the frame-indifference condition from Guermond et al. (2003) since we have
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subtracted the term which caused issues before, and have only added an extra gradient
term. Thus, we have the form

∂u

∂t
+ u · ∇u = ∇ · (qI + T), (5.37)

where

q = −〈p〉+ α2s : s− 1

2
α4|∇2〈u〉|2, (5.38)

T = 2ν(1− α2∇2)s + 2∇2s̆. (5.39)

Hence, as Sagaut (2006) stated, we have found that the Navier–Stokes-α method
arises as a frame-indifferent perturbation of order α2 of the original Leray model. Its
mathematical underpinnings are further justified by the form of Kelvin’s theorem (5.33)
that it satisfies. Understandably, this means the NS-α model produces results with more
“realistic variability” than the Leray model. Geurts (2014) showed that the solutions
provided by the NS-α model matched DNS results relatively closely, whereas the Leray
model over-smoothed some of the turbulent flow behaviour. However, the Leray model
showed itself to be more robust at high Reynolds numbers and produced better results
than Germano’s dynamic method discussed in section 4.3. Further research should widen
the application of these regularization models, which are already showing much promise
compared to the most commonly used LES models.
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Chapter 6

Conclusion

Over the course of this dissertation, we have investigated the Large Eddy Simulation
approach for modelling turbulent fluid flows. We started by outlining the theory of
Kolmogorov (1941) which kick-started research on turbulent flow, before introducing
scale separation and flow averaging using a filter in Chapter 2. We then highlighted
some examples of spatial averages used in LES, including the idea of averaging using an
invertible differential filter. We also derived the filtered Navier–Stokes equations, which
contain the unresolved tensor τ to account for the effect of the small scale fluctuations.

We need a closure model for τ to evolve the filtered velocity, so in Chapter 3 we
investigated which physical constraints should be imposed either on τ or on the filter.
We showed that the filter kernel should be spherically symmetric, and that ∇·τ must be
invariant under an arbitrary change of frame. We also introduced the idea of generalized
turbulent energy, and showed that it is bounded if we use a positive filter.

To satisfy these conditions, we introduced an eddy viscosity model for τ , and derived
the simple Smagorinsky (1963) implementation of this idea in Chapter 4. We explored the
work of Germano (1992) to formulate a dynamic version of this implementation which
adapts the eddy viscosity to the flow regime during a simulation. We highlighted the
improvement made to this model by Lilly (1992), and derived a variational formulation
proposed by Ghosal et al. (1995) based on the dynamic model that properly treats the
Smagorinsky coefficient cS as a function of space and time.

In Chapter 5, we introduced the notion of regularization of the Navier–Stokes equa-
tions proposed by Leray (1934) and highlighted the importance of this paper for the
analysis of the NSEs. We then applied Leray’s idea to LES using the modified Helmholtz
filter, and showed that a direct implementation of regularization does not satisfy our
frame-indifference condition. To resolve this problem, we formulated the Navier–Stokes-α
model (Foias et al., 2001) as a frame-indifferent perturbation of the original regularization.

Through development of the underlying mathematics of LES models, progress has
been made in producing more accurate numerical simulations (see Carati et al., 1995;
Geurts, 2014). This gives us confidence that further research into the mathematical
theory of LES will produce ever more reliable simulations in the future.

Large Eddy Simulation is a vast topic, and this dissertation has only focused on a
small part of the modelling process. Many models have been proposed for LES which we
have not discussed, for example using stochastic techniques (Sagaut, 2006). We have also
mentioned very little about modelling turbulent flow near a boundary, which is key to
many applications in engineering. The mathematical theory for LES is limited in many
of these areas, where there is much scope for further research.
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Appendix A

Central Moments Derivations

In section 3.2, we explored the idea of averaging invariance by introducing generalised cen-
tral moments. We produced a number of equations involving these generalised moments,
which are derived here in full.

Using notation from section 3.2, the Navier–Stokes momentum equation is

∂ui
∂t

+
∂

∂xk
(uiuk) = − ∂p

∂xi
+ ν

∂2ui
∂xk∂xk

+ Fi. (A.1)

We first multiply (A.1) by uj:

uj
∂ui
∂t

+ uj
∂

∂xk
(uiuk) = −uj

∂p

∂xi
+ νuj

∂2ui
∂xk∂xk

+ ujFi, (A.2)

and consider the same expression with i and j interchanged:

ui
∂uj
∂t

+ ui
∂

∂xk
(ujuk) = −ui

∂p

∂xj
+ νui

∂2uj
∂xk∂xk

+ uiFj. (A.3)

Adding (A.2) and (A.3) gives

∂(uiuj)

∂t
+

∂

∂xk
(uiujuk) =−

[
∂

∂xj
(pui) +

∂

∂xi
(puj)− p

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ν

(
ui
∂2uj
∂xkxk

+ uj
∂2ui
∂xkxk

)
+ uiFj + ujFi.

(A.4)

Using

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.5)

and
∂2(uiuj)

∂xk∂xk
= ui

∂2uj
∂xk∂xk

+ 2
∂ui
∂xk

∂uj
∂xk

+ uj
∂2ui

∂xk∂xk
, (A.6)

we obtain equation (3.23)

∂(uiuj)

∂t
+

∂

∂xk
(uiujuk) =− ∂

∂xk

[
puiδjk + pujδik − ν

∂(uiuj)

∂xk

]
+ 2psij

− 2ν
∂ui
∂xk

∂uj
∂xk

+ uiFj + ujFi.

(A.7)

39



Operating on this with a filter:

∂〈uiuj〉
∂t

+
∂

∂xk
〈uiujuk〉 =− ∂

∂xk

[
〈pui〉δjk + 〈puj〉δik − ν

∂〈uiuj〉
∂xk

]
+ 2〈psij〉

− 2ν

〈
∂ui
∂xk

∂uj
∂xk

〉
+ 〈uiFj〉+ 〈ujFi〉.

(A.8)

Writing the filtered momentum equation (2.33) in the same form as (A.1):

∂〈ui〉
∂t

+
∂

∂xk
(〈ui〉〈uk〉) = −∂〈p〉

∂xi
+ ν

∂2〈ui〉
∂xk∂xk

+ 〈Fi〉 −
∂

∂xk
(τ(ui, uk)). (A.9)

By the same approach as above, we obtain

∂(〈ui〉〈uj〉)
∂t

+
∂

∂xk
(〈ui〉〈uj〉〈uk〉)

=− ∂

∂xk

[
〈p〉〈ui〉δjk + 〈p〉〈uj〉δik − ν

∂(〈ui〉〈uj〉)
∂xk

]
+ 2〈p〉〈sij〉 − 2ν

∂〈ui〉
∂xk

∂〈uj〉
∂xk

+ 〈ui〉〈Fj〉+ 〈uj〉〈Fi〉 − Tij,

(A.10)

where

Tij = 〈ui〉
∂

∂xk
(τ(uj, uk)) + 〈uj〉

∂

∂xk
(τ(ui, uk)), (A.11a)

=
∂

∂xk
[〈ui〉τ(uj, uk) + 〈uj〉τ(ui, uk)]−

∂〈ui〉
∂xk

τ(uj, uk)−
∂〈uj〉
∂xk

τ(ui, uk). (A.11b)

Subtracting (A.10) from (A.8) then gives

∂(τ(ui, uj))

∂t
+

∂

∂xk
[〈uiujuk〉 − 〈ui〉〈uj〉〈uk〉]

=− ∂

∂xk

[
τ(p, ui)δjk + τ(p, uj)δik − ν

∂(τ(ui, uj))

∂xk

]
+ 2τ(p, sij)

− 2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
+ τ(ui, Fj) + τ(uj, Fi) + Tij.

(A.12)

Comparing (A.11b) with the definition of the generalised third moment

τ(ui, uj, uk) =〈uiujuk〉 − 〈ui〉τ(uj, uk)− 〈uj〉τ(uk, ui)

− 〈uk〉τ(ui, uj)− 〈ui〉〈uj〉〈uk〉,
(A.13)

we can rearrange (A.12) and cancel terms to obtain equation (3.24)

∂τ(ui, uj)

∂t
+

∂

∂xk
(τ(ui, uj)〈uk〉) = − ∂

∂xk

{
τ(ui, uj, uk) + τ(p, ui)δjk

+τ(p, uj)δik − ν
∂τ(ui, uj)

∂xk

}
+ 2τ(p, sij)− 2ντ

(
∂ui
∂xk

,
∂uj
∂xk

)
− τ(ui, uk)

∂〈uj〉
∂xk

− τ(uj, uk)
∂〈ui〉
∂xk

+ τ(ui, Fj) + τ(uj, Fi).

(A.14)
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Contracting this equation with δij and halving gives an equation for ET = 1
2
τ(ui, ui):

∂ET
∂t

+
∂(ET 〈uk〉)

∂xk
=− ∂

∂xk

[
1

2
τ(ui, ui, uk) + τ(p, uk)− ν

∂ET
∂xk

]
− ντ

(
∂ui
∂xk

,
∂ui
∂xk

)
− τ(ui, uk)

∂〈ui〉
∂xk

+ τ(ui, Fi).

(A.15)

We rewrite the penultimate term by taking the filter outside the spatial derivative and
decomposing the velocity gradient into symmetric and anti-symmetric parts:

τ(ui, uk)
∂〈ui〉
∂xk

= τ(ui, uk)

〈
∂ui
∂xk

〉
, (A.16a)

= τ(ui, uk)

〈
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
+

1

2

(
∂ui
∂xk
− ∂uk
∂xi

)〉
. (A.16b)

The last term in the angle brackets 〈 · 〉 is anti-symmetric, and is contracted with τ(ui, uk)
which is symmetric, so the last term vanishes, leaving

τ(ui, uk)
∂〈ui〉
∂xk

= τ(ui, uk)〈sij〉. (A.17)

Substituting (A.17) into (A.15) leads to equation (3.26):

∂ET
∂t

+
∂(ET 〈uk〉)

∂xk
=− ∂

∂xk

[
1

2
τ(ui, ui, uk) + τ(p, uk)− ν

∂ET
∂xk

]
− ντ

(
∂ui
∂xk

,
∂ui
∂xk

)
− τ(ui, uk)〈sik〉+ τ(ui, Fi).

(A.18)
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Appendix B

Gramian Matrices Proof

In section 3.3, we proved that the subgrid tensor τ is positive semidefinite if and only if
the filter kernel G is positive everywhere. Our proof used the result that every Gramian
matrix is positive semidefinite, which is proved in this appendix.

For a set of vectors {v1, v2, v3} in a 3-dimensional vector space V , the Gramian matrix
A is defined as having entries

aij = [vi, vj] , i, j ∈ {1, 2, 3} (B.1)

where [ · , · ] is an inner product on V .
We want to show that any Gramian matrix satisfies the realizability conditions (3.30)

to (3.32) as repeated below:

aii ≥ 0, for i ∈ {1, 2, 3}, (B.2)

|aij| ≤
√
aiiajj, for i, j ∈ {1, 2, 3}, (B.3)

detA ≥ 0. (B.4)

By positivity of the inner product,

aii = [vi, vi] ≥ 0 for all i, (B.5)

so (3.30) is immediately satisfied. The inner product also naturally defines a norm on V :

‖vi‖ =
√

[vi, vi]. (B.6)

With this definition, we can apply the Cauchy–Schwarz inequality to obtain property
(3.31)

|aij| = |[vi, vj]| ≤ ‖vi‖‖vj‖ =
√

[vi, vi][vj, vj] =
√
aiiajj. (B.7)

Finally, we can use the inner product with Gram–Schmidt orthogonalisation (see Kaye
& Wilson (1998)) to form an orthonormal basis {u1, u2, u3} for V . We can now express
A as

A = MTM where M =

[v1, u1] [v2, u1] [v3, u1]
[v1, u2] [v2, u2] [v3, u2]
[v1, u3] [v2, u3] [v3, u3]

 . (B.8)

Then, since det(MT ) = detM ,

detA = (detM)2 ≥ 0. (B.9)

Therefore, any Gramian matrix is positive semidefinite.
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